Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Nat Genet. 2007 Jan;39(1):93-8. Epub 2006 Dec 3.

A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice.

Author information

  • 1Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA. shima023@umn.edu

Abstract

Mcm4 (minichromosome maintenance-deficient 4 homolog) encodes a subunit of the MCM2-7 complex (also known as MCM2-MCM7), the replication licensing factor and presumptive replicative helicase. Here, we report that the mouse chromosome instability mutation Chaos3 (chromosome aberrations occurring spontaneously 3), isolated in a forward genetic screen, is a viable allele of Mcm4. Mcm4(Chaos3) encodes a change in an evolutionarily invariant amino acid (F345I), producing an apparently destabilized MCM4. Saccharomyces cerevisiae strains that we engineered to contain a corresponding allele (resulting in an F391I change) showed a classical minichromosome loss phenotype. Whereas homozygosity for a disrupted Mcm4 allele (Mcm4(-)) caused preimplantation lethality, Mcm(Chaos3/-) embryos died late in gestation, indicating that Mcm4(Chaos3) is hypomorphic. Mutant embryonic fibroblasts were highly susceptible to chromosome breaks induced by the DNA replication inhibitor aphidicolin. Most notably, >80% of Mcm4(Chaos3/Chaos3) females succumbed to mammary adenocarcinomas with a mean latency of 12 months. These findings suggest that hypomorphic alleles of the genes encoding the subunits of the MCM2-7 complex may increase breast cancer risk.

Comment in

PMID:
17143284
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk