Format

Send to:

Choose Destination
See comment in PubMed Commons below
Brain Behav Immun. 2007 Mar;21(3):292-300. Epub 2006 Nov 28.

Illness-induced anorexia and its possible function in the caterpillar, Manduca sexta.

Author information

  • 1Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada. sadamo@dal.ca

Abstract

Although many animals exhibit illness-induced anorexia when immune-challenged, the adaptive significance of this behavior remains unclear. Injecting Manduca sexta larvae (caterpillars) with live bacteria (Serratia marcescens), heat-killed bacteria or bacterial lipopolysaccharides resulted in a decline in feeding, demonstrating illness-induced anorexia in this species. We used M. sexta to test four commonly suggested adaptive functions for illness-induced anorexia. (1) Food deprivation did not reduce the iron content of the hemolymph. (2) Immune-challenged M. sexta were not more likely to move to a different part of the plant. Therefore, the decline in feeding is unlikely to be an adaptive response allowing the animal to move away from a patch of contaminated food. (3) M. sexta force-fed S. marcescens bacteria were not more susceptible to a S. marcescens systemic infection than were M. sexta force-fed nutrient broth. (4) Force-feeding infected M. sexta during illness-induced anorexia did not increase mortality and short-term food deprivation did not enhance survival. However, force-feeding M. sexta with a high lipid diet (linseed oil and water) resulted in an increase in mortality when challenged with S. marcescens. Force-feeding sucrose or water did not reduce resistance. Force-feeding a high lipid diet into healthy animals did not reduce weight gain, suggesting that it was not toxic. We hypothesize that there is a conflict between lipid metabolism and immune function, although whether this conflict has played a role in the evolution of illness-induced anorexia remains unknown. The adaptive function of illness-induced anorexia requires further study in both vertebrates and invertebrates.

PMID:
17126528
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk