Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Int J Phytoremediation. 2006;8(3):233-43.

Stimulating natural defenses in poplar clones (OP-367) increases plant metabolism of carbon tetrachloride.

Author information

  • 1College of the Holy Cross, Worcester, MA, USA.

Abstract

Groundwater contamination by carbon tetrachloride (CCl4) presents a health risk as a potential carcinogen and pollutant that is capable of depleting the ozone layer. Although use of poplar trees in a phytoremediation capacity has proven to be cost effective for cleaning contaminated sites, minimizing leaf emission of volatile contaminants remains a pressing issue. We hypothesized that recently fixed carbon plays a key role in CCl4 metabolism in planta yielding nonvolatile trichloroacetic acid (TCA) and that the extent of this metabolism can be altered by heightening plant defenses. Labeling intact leaves with (11)CO2 (t 1/2 20.4 m) can test this hypothesis, because the extremely short half-life of the tracer reflects only those processes involving recently fixed carbon. Using radio-HPLC analysis, we observed [(11)C]TCA from leaf extract from poplar clones (OP-367) whose roots were exposed to a saturated solution of CCl4 (520 ppm). Autoradiography of [(11)C]photosynthate showed increased leaf export and partitioning to the apex within 24 h of CCl4 exposure, suggesting that changes in plant metabolism and partitioning of recently fixed carbon occur rapidly. Additionally, leaf CCl4 emissions were highest in the morning, when carbon pools are low, suggesting a link between contaminant metabolism and leaf carbon utilization. Further, treatment with methyljasmonate, a plant hormone implicated in defense signal transduction, reduced leaf CCl4 emissions two-fold due to the increased formation of TCA.

PMID:
17120527
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk