Format

Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2006 Nov 29;128(47):15324-31.

Solution-phase single quantum dot fluorescence resonance energy transfer.

Author information

  • 1Optical Sciences Division, Code 5611, Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, Washington, D.C. 20375, USA.

Abstract

We present a single particle fluorescence resonance energy transfer (spFRET) study of freely diffusing self-assembled quantum dot (QD) bioconjugate sensors, composed of CdSe-ZnS core-shell QD donors surrounded by dye-labeled protein acceptors. We first show that there is direct correlation between single particle and ensemble FRET measurements in terms of derived FRET efficiencies and donor-acceptor separation distances. We also find that, in addition to increased sensitivity, spFRET provides information about FRET efficiency distributions which can be used to resolve distinct sensor subpopulations. We use this capacity to gain information about the distribution in the valence of self-assembled QD-protein conjugates and show that this distribution follows Poisson statistics. We then apply spFRET to characterize heterogeneity in single sensor interactions with the substrate/target and show that such heterogeneity varies with the target concentration. The binding constant derived from spFRET is consistent with ensemble measurements.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk