Format

Send to:

Choose Destination
See comment in PubMed Commons below
Bioorg Med Chem. 2007 Feb 1;15(3):1346-55. Epub 2006 Nov 9.

Substrate specificity analysis and inhibitor design of homoisocitrate dehydrogenase.

Author information

  • 1Department of Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan.

Abstract

Homoisocitrate dehydrogenase is involved in the alpha-aminoadipate pathway of biosynthesis of l-lysine in fungi, yeast, some prokaryotic bacteria, and archaea. This enzyme catalyzes the oxidative decarboxylation of (2R,3S)-homoisocitrate into 2-oxoadipate using NAD(+) as a coenzyme. Substrate specificity of two homoisocitrate dehydrogenases derived from Deinococcus radiodurans and Saccharomyces cerevisiae was analyzed using a series of synthetic substrate analogs, which indicated a relatively broad substrate specificity of these enzymes. Based on the substrate specificity, 3-hydroxyalkylidene- and 3-carboxyalkylidenemalate derivatives were designed as a specific inhibitor for homoisocitrate dehydrogenase. The synthetic inhibitors showed a moderate competitive inhibitory activity and (R,Z)-3-carboxypropylidenemalate was the most inhibitory among the synthesized inhibitors. Therefore, homoisocitrate dehydrogenase appeared to recognize preferentially an extended conformation of homoisocitrate.

PMID:
17116397
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk