Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cancer Res. 2006 Nov;4(11):811-20.

Down syndrome candidate region 1 isoform 1 mediates angiogenesis through the calcineurin-NFAT pathway.

Author information

  • 1Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue RN 270A, Boston, MA 02215, USA.

Abstract

Down syndrome candidate region 1 (DSCR1) is one of more than 50 genes located in a region of chromosome 21 that has been implicated in Down syndrome. DSCR1 can be expressed as four isoforms, one of which, isoform 4 (DSCR1-4), has recently been found to be strongly induced by vascular endothelial growth factor A (VEGF-A(165)) and to provide a negative feedback loop that inhibits VEGF-A(165)-induced endothelial cell proliferation in vitro and angiogenesis in vivo. We report here that another DSCR1 isoform, DSCR1-1L, is also up-regulated by VEGF-A(165) in cultured endothelial cells and is strongly expressed in several types of pathologic angiogenesis in vivo. In contrast to DSCR1-4, the overexpression of DSCR1-1L induced the proliferation and activation of the transcription factor NFAT in cultured endothelial cells and promoted angiogenesis in Matrigel assays in vivo, even in the absence of VEGF-A. Similarly, small interfering RNAs specific for DSCR1-1L and DSCR1-4 had opposing inhibitory and stimulatory effects, respectively, on these same functions. DSCR1-4 is thought to inhibit angiogenesis by inactivating calcineurin, thereby preventing activation and nuclear translocation of NFAT, a key transcription factor. In contrast, DSCR1-1L, regulated by a different promoter than DSCR1-4, activates NFAT and its proangiogenic activity is inhibited by cyclosporin, an inhibitor of calcineurin. In sum, DSCR1-1L, unlike DSCR1-4, potently activates angiogenesis and could be an attractive target for antiangiogenesis therapy.

PMID:
17114339
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk