Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Comput Chem. 2007 Jan 15;28(1):222-37.

Pair interaction energy decomposition analysis.

Author information

  • 1National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan. d.g.fedorov@aist.go.jp

Abstract

The energy decomposition analysis (EDA) by Kitaura and Morokuma was redeveloped in the framework of the fragment molecular orbital method (FMO). The proposed pair interaction energy decomposition analysis (PIEDA) can treat large molecular clusters and the systems in which fragments are connected by covalent bonds, such as proteins. The interaction energy in PIEDA is divided into the same contributions as in EDA: the electrostatic, exchange-repulsion, and charge transfer energies, to which the correlation (dispersion) term was added. The careful comparison to the ab initio EDA interaction energies for water clusters with 2-16 molecules revealed that PIEDA has the error of at most 1.2 kcal/mol (or about 1%). The analysis was applied to (H2O)1024, the alpha helix, beta turn, and beta strand of polyalanine (ALA)10, as well as to the synthetic protein (PDB code 1L2Y) with 20 residues. The comparative aspects of the polypeptide isomer stability are discussed in detail.

Copyright (c) 2006 Wiley Periodicals, Inc.

PMID:
17109433
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk