Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Gen Physiol. 2006 Dec;128(6):671-85. Epub 2006 Nov 13.

Turning cones off: the role of the 9-methyl group of retinal in red cones.

Author information

  • 1Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA. estevez@bu.edu

Abstract

Our ability to see in bright light depends critically on the rapid rate at which cone photoreceptors detect and adapt to changes in illumination. This is achieved, in part, by their rapid response termination. In this study, we investigate the hypothesis that this rapid termination of the response in red cones is dependent on interactions between the 9-methyl group of retinal and red cone opsin, which are required for timely metarhodopsin (Meta) II decay. We used single-cell electrical recordings of flash responses to assess the kinetics of response termination and to calculate guanylyl cyclase (GC) rates in salamander red cones containing native visual pigment as well as visual pigment regenerated with 11-cis 9-demethyl retinal, an analogue of retinal in which the 9-methyl group is missing. After exposure to bright light that photoactivated more than approximately 0.2% of the pigment, red cones containing the analogue pigment had a slower recovery of both flash response amplitudes and GC rates (up to 10 times slower at high bleaches) than red cones containing 11-cis retinal. This finding is consistent with previously published biochemical data demonstrating that red cone opsin regenerated in vitro with 11-cis 9-demethyl retinal exhibited prolonged activation as a result of slowed Meta II decay. Our results suggest that two different mechanisms regulate the recovery of responsiveness in red cones after exposure to light. We propose a model in which the response recovery in red cones can be regulated (particularly at high light intensities) by the Meta II decay rate if that rate has been inhibited. In red cones, the interaction of the 9-methyl group of retinal with opsin promotes efficient Meta II decay and, thus, the rapid rate of recovery.

PMID:
17101818
[PubMed - indexed for MEDLINE]
PMCID:
PMC2151603
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk