Format

Send to:

Choose Destination
See comment in PubMed Commons below
Methods. 2006 Dec;40(4):344-52.

Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions.

Author information

  • 1Department of Cellular and Molecular Pharmacology, The California Institute for Quantitative Biomedical Research, UCSF, Mission Bay Campus, Byers Hall, 1700 4th Street, San Francisco, California 94143-2540, USA. mschuldiner@cmp.ucsf.edu

Abstract

The use of the budding yeast Saccharomyces cerevisiae as a simple eukaryotic model system for the study of chromatin assembly and regulation has allowed rapid discovery of genes that influence this complex process. The functions of many of the proteins encoded by these genes have not yet been fully characterized. Here, we describe a high-throughput methodology that can be used to illuminate gene function and discuss its application to a set of genes involved in the creation, maintenance and remodeling of chromatin structure. Our technique, termed E-MAPs, involves the generation of quantitative genetic interaction maps that reveal the function and organization of cellular proteins and networks.

PMID:
17101447
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk