Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2007 Mar;292(3):H1634-40. Epub 2006 Nov 10.

Propagation of calcium waves along endothelium of hamster feed arteries.

Author information

  • 1The John B Pierce Laboratory, Yale University, New Haven, CT, USA.

Abstract

An increase in tissue blood flow requires relaxation of smooth muscle cells along entire branches of the resistance vasculature. Whereas the spread of hyperpolarization along the endothelium can coordinate smooth muscle cell relaxation, complementary signaling events have been implicated in the conduction of vasodilation. We tested the hypothesis that Ca(2+) waves propagate from cell to cell along the endothelium of feed arteries exhibiting spontaneous vasomotor tone. Feed arteries of the hamster retractor muscle were isolated, pressurized to 75 mmHg at 37 degrees C, and developed myogenic tone spontaneously. Smooth muscle cells and endothelial cells were loaded with the Ca(2+) indicator Fluo-4. An acetylcholine stimulus was delivered locally using microiontophoresis (1-microm pipette tip, 1 microA, 1 s), and Ca(2+) signaling within and along respective cell layers was determined using laser-scanning confocal microscopy. Acetylcholine triggered an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) of endothelial cells at the site of stimulation that preceded two distinct events: 1) a rapid synchronous decrease in smooth muscle [Ca(2+)](i) along the entire vessel and 2) an ensuing Ca(2+) wave that propagated bidirectionally along the endothelium at approximately 111 microm/s for distances exceeding 1 mm. Maximal dilation of vessels with either nifedipine (1 microM) or sodium nitroprusside (SNP, 100 microM) reduced the distance that Ca(2+) waves traveled to approximately 300 microm (P < 0.05). Thus Ca(2+) waves propagate along the endothelium of resistance vessels with vasomotor tone, and this signaling pathway is compromised during maximal dilation with nifedipine or SNP.

PMID:
17098832
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk