Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Bioresour Technol. 2007 Oct;98(14):2659-70. Epub 2006 Nov 7.

NH3, N2O and CH4 emissions during passively aerated composting of straw-rich pig manure.

Author information

  • 1Department of Environmental Technology, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands.

Abstract

Straw-rich manure from organic pig farming systems was composted in passively aerated static piles to estimate the effect of monthly turning on organic matter degradation and NH(3), N(2)O and CH(4) emissions. Turning enhanced the rate of drying and degradation. The four-month treatment degraded 57+/-3% of the initial organic matter in the turned piles, while only 40+/-5% in the static piles. The turned piles showed low ammonia and N(2)O emissions, 3.9+/-0.2% and 2.5+/-0.1% of total initial nitrogen, respectively. Static piles gave low ammonia (2.4+/-0.1% N(initial)), but high (9.9+/-0.5% N(initial)) N(2)O emissions. Prevalence of anaerobic regions in the static system was supported by the higher CH(4) emissions, 12.6+/-0.6% VS(degraded) for the static vs. 0.4+/-0.0% VS(degraded) for the turned system. It was shown, that straw-rich pig manure with very low C/N ratios could be composted directly without significant NH(3) and N(2)O emissions if turned on a monthly basis.

PMID:
17092707
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk