Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biomed Opt. 2006 Sep-Oct;11(5):054008.

Diffuse optical tomographic reconstruction using multifrequency data.

Author information

  • 1University of California, Tu and Yuen Center for Functional Onco-Imaging, Irvine, California 92697, USA. munlu@uci.edu

Abstract

We investigated the use of multifrequency diffuse optical tomography (MF-DOT) data for the reconstruction of the optical parameters. The experiments were performed in a 63 mm diameter cylindrical phantom containing a 15 mm diameter cylindrical object. Modulation frequencies ranging from 110 MHz to 280 MHz were used in the phantom experiments changing the contrast in absorption of the object with respect to the phantom while keeping the scattering value the same. The diffusion equation was solved using the finite element method. The sensitivity information from each frequency was combined to form a single Jacobian. The inverse problem was solved iteratively by minimizing the difference between the measurements and forward problem using single and multiple modulation frequency data. A multiparameter Tikhonov scheme was used for regularization. The phantom results show that the peak absorption coefficient in a region of interest was obtained with an error less then 5% using two-frequency reconstruction for absorption contrast values up to 2.2 times higher than background and 10% for the absorption contrast values larger than 2.2. The use of two-frequency data is sufficient to improve the quantitative accuracy compared with the single frequency reconstruction with appropriate selection of these frequencies.

PMID:
17092157
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Write to the Help Desk