Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Hum Genet. 2007 Mar;121(1):93-100. Epub 2006 Nov 8.

Analysis of segmental duplications reveals a distinct pattern of continuation-of-synteny between human and mouse genomes.

Author information

  • 1Center for Neurobehavioral Genetics, Neuropsychiatric Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.

Abstract

About 5% of the human genome consists of large-scale duplicated segments of almost identical sequences. Segmental duplications (SDs) have been proposed to be involved in non-allelic homologous recombination leading to recurrent genomic variation and disease. It has also been suggested that these SDs are associated with syntenic rearrangements that have shaped the human genome. We have analyzed 14 members of a single family of closely related SDs in the human genome, some of which are associated with common inversion polymorphisms at chromosomes 8p23 and 4p16. Comparative analysis with the mouse genome revealed syntenic inversions for these two human polymorphic loci. In addition, 12 of the 14 SDs, while absent in the mouse genome, occur at the breaks of synteny; suggesting a non-random involvement of these sequences in genome evolution. Furthermore, we observed a syntenic familial relationship between 8 and 12 breakpoint-loci, where broken synteny that ends at one family member resumes at another, even across different chromosomes. Subsequent genome-wide assessment revealed that this relationship, which we named continuation-of-synteny, is not limited to the 8p23 family and occurs 46 times in the human genome with high frequency at specific chromosomes. Our analysis supports a non-random breakage model of genomic evolution with an active involvement of segmental duplications for specific regions of the human genome.

PMID:
17091282
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Springer
    Loading ...
    Write to the Help Desk