Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16623-33. Epub 2006 Oct 30.

A backbone-based theory of protein folding.

Author information

  • 1T. C. Jenkins Department of Biophysics,The Johns Hopkins University, Jenkins Hall, 3400 North Charles Street, Baltimore, MD 21218, USA.


Under physiological conditions, a protein undergoes a spontaneous disorder order transition called "folding." The protein polymer is highly flexible when unfolded but adopts its unique native, three-dimensional structure when folded. Current experimental knowledge comes primarily from thermodynamic measurements in solution or the structures of individual molecules, elucidated by either x-ray crystallography or NMR spectroscopy. From the former, we know the enthalpy, entropy, and free energy differences between the folded and unfolded forms of hundreds of proteins under a variety of solvent/cosolvent conditions. From the latter, we know the structures of approximately 35,000 proteins, which are built on scaffolds of hydrogen-bonded structural elements, alpha-helix and beta-sheet. Anfinsen showed that the amino acid sequence alone is sufficient to determine a protein's structure, but the molecular mechanism responsible for self-assembly remains an open question, probably the most fundamental open question in biochemistry. This perspective is a hybrid: partly review, partly proposal. First, we summarize key ideas regarding protein folding developed over the past half-century and culminating in the current mindset. In this view, the energetics of side-chain interactions dominate the folding process, driving the chain to self-organize under folding conditions. Next, having taken stock, we propose an alternative model that inverts the prevailing side-chain/backbone paradigm. Here, the energetics of backbone hydrogen bonds dominate the folding process, with preorganization in the unfolded state. Then, under folding conditions, the resultant fold is selected from a limited repertoire of structural possibilities, each corresponding to a distinct hydrogen-bonded arrangement of alpha-helices and/or strands of beta-sheet.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk