Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Yeast. 2006 Oct 15;23(13):929-35.

Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts.

Author information

  • 1School of Life Sciences, Södertörns Högskola, SE-141 89, Huddinge, Sweden.

Erratum in

  • Yeast. 2006 Dec;23(16):1173.

Abstract

Regulatory transcription factors (rTFs), which bind specific DNA sequences in the regulatory regions of genes and subsequently activate or repress transcription, play a central role in programming genomic expression. The number of rTFs in a species might therefore reflect its functional complexity. For simple organisms like yeast, a relatively small number of rTFs might be expected that is fairly constant between yeast species. We show that the budding yeast, Saccharomyces cerevisiae, contains 201 rTfs, which is one of the largest rTF numbers found in yeast species for which genome sequences are available. This is a much higher number than the 129 rTFs found in the fission yeast, Schizosaccharomyces pombe, which is currently the yeast with the lowest number of rTFs. Comparative analysis of several different budding yeast species shows that most of the 'extra' rTFs found in S. cerevisiae were probably acquired as a result of a whole genome duplication (WGD) event that occurred in an ancestor of a subset of budding yeast species. However, we also show that budding yeast species that have not been affected by the WGD contain a greater number of rTFs than S. pombe (mean = 145). Thus, two or more mechanisms have led to the 60% increase in rTFs in S. cerevisiae compared to S. pombe. This difference may correlate with a more extensive functional divergence in budding yeasts compared to fission yeasts. The relatively small number of rTFs in S. pombe make this organism an attractive model for global studies of mechanisms that programme gene expression.

Copyright 2006 John Wiley & Sons, Ltd.

PMID:
17072884
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk