Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2007 Mar;292(3):H1328-35. Epub 2006 Oct 27.

Chronic allopurinol administration ameliorates maladaptive alterations in Ca2+ cycling proteins and beta-adrenergic hyporesponsiveness in heart failure.

Author information

  • 1Johns Hopkins Medical Institutions, Broadway Research Bldg, Baltimore MD 21205, USA.

Abstract

Xanthine oxidase (XO) activity contributes to both abnormal excitation-contraction (EC) coupling and cardiac remodeling in heart failure (HF). beta-Adrenergic hyporesponsiveness and abnormalities in Ca(2+) cycling proteins are mechanistically linked features of the HF phenotype. Accordingly, we hypothesized that XO influences beta-adrenergic responsiveness and expression of genes whose products participate in deranged EC coupling. We measured inotropic (dP/dt(max)), lusitropic (tau), and vascular (elastance; E(a)) responses to beta-adrenergic (beta-AR) stimulation with dobutamine in conscious dogs administered allopurinol (100 mg po daily) or placebo during a 4-wk induction of pacing HF. With HF induction, the decreases in both baseline and dobutamine-stimulated inotropic responses were offset by allopurinol. Additionally, allopurinol converted a vasoconstrictor effect to dobutamine to a vasodilator response and enhanced both lusitropic and preload reducing effects. To assess molecular correlates for this phenotype, we measured myocardial sarcoplasmic reticulum Ca(2+)-ATPase 2a (SERCA), phospholamban (PLB), phosphorylated PLB (P-PLB), and Na(+)/Ca(2+) transporter (NCX) gene expression and protein. Although SERCA mRNA and protein concentrations did not change with HF, both PLB and NCX were upregulated (P < 0.05). Additionally, P-PLB and protein kinase A activity were greatly reduced. Allopurinol ameliorated all of these molecular alterations and preserved the PLB-to-SERCA ratio. Preventing maladaptive alterations of Ca(2+) cycling proteins represents a novel mechanism for XO inhibition-mediated preservation of cardiac function in HF, raising the possibility that anti-oxidant therapies for HF may ameliorate transcriptional changes associated with adverse cardiac remodeling and beta-adrenergic hyporesponsiveness.

PMID:
17071724
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk