Send to:

Choose Destination
See comment in PubMed Commons below
Clin Cancer Res. 2006 Oct 15;12(20 Pt 2):6222s-6230s.

Molecular mechanisms of action of bisphosphonates: current status.

Author information

  • 1Bone Research Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.



Bisphosphonates are currently the most important class of antiresorptive agents used in the treatment of metabolic bone diseases, including tumor-associated osteolysis and hypercalcemia. These compounds have high affinity for calcium ions and therefore target bone mineral, where they are internalized by bone-resorbing osteoclasts and inhibit osteoclast function.


This article reviews the pharmacology of bisphosphonates and the relationship between chemical structure and antiresorptive potency. We also describe new insights into their intracellular molecular mechanisms of action, methods for assessing the effects of bisphosphonates on protein prenylation, and their potential as direct antitumor agents.


Nitrogen-containing bisphosphonates act intracellularly by inhibiting farnesyl diphosphate synthase, an enzyme of the mevalonate pathway, thereby preventing prenylation of small GTPase signaling proteins required for normal cellular function. Inhibition of farnesyl diphosphate synthase also seems to account for their antitumor effects observed in vitro and for the activation of gamma,delta T cells, a feature of the acute-phase response to bisphosphonate treatment in humans. Bisphosphonates that lack a nitrogen in the chemical structure do not inhibit protein prenylation and have a different mode of action that seems to involve primarily the formation of cytotoxic metabolites in osteoclasts.


Bisphosphonates are highly effective inhibitors of bone resorption that selectively affect osteoclasts in vivo but could also have direct effects on other cell types, such as tumor cells. After >30 years of clinical use, their molecular mechanisms of action on osteoclasts are finally becoming clear but their exact antitumor properties remain to be clarified.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk