Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Transplantation. 2006 Oct 27;82(8):1085-92.

Costimulatory blockade induces hyporesponsiveness in T cells that recognize alloantigen via indirect antigen presentation.

Author information

  • 1Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA. nancy.phillips@umassmed.edu

Abstract

BACKGROUND:

Blockade of T cell costimulation by treatment with donor-specific transfusion (DST) and anti-CD154 monoclonal antibody (mAb) induces prolonged allograft survival in mice. This effect is due in part to deletion of host CD8 and CD4 T cells that recognize alloantigen by direct presentation. The fate of host CD4 T cells that recognize alloantigen by indirect presentation, however, is unclear.

METHODS:

We studied Tg361 TCR transgenic CD4 T cells that recognize alloantigen by indirect presentation. Carboxyfluorescein diacetate, succinimidyl ester-labeled Tg361 cells were adoptively transferred into syngeneic nontransgenic recipients and their fate in the peripheral blood, spleen, and lymph nodes following treatment with DST and anti-CD154 was analyzed.

RESULTS:

Treatment of mice with DST plus anti-CD154 mAb does not delete Tg361 CD4 T cells, but instead renders them hyporesponsive to rechallenge with alloantigen. Mice circulating hyporesponsive CD4 T cells also fail to reject skin allografts. The hyporesponsive state of the T cells is not reversed by the addition of interleukin-2, anti-CD28 mAb, or an agonistic anti-CD134 mAb in the presence of antigen. These T cells are capable of activation, however, as evidenced by in vitro proliferation in response to anti-CD3 mAb.

CONCLUSIONS:

These results demonstrate that costimulation blockade can induce hyporesponsiveness of host CD4 T cells recognizing alloantigens by indirect presentation, thus prolonging graft survival by a mechanism that does not involve deletion of alloreactive T cells.

PMID:
17060858
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk