Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell. 2006 Oct 20;127(2):277-89.

Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse.

Author information

  • 1Inserm UMRS587, Unité de Génétique des Déficits Sensoriels, Collège de France, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.

Abstract

The auditory inner hair cell (IHC) ribbon synapse operates with an exceptional temporal precision and maintains a high level of neurotransmitter release. However, the molecular mechanisms underlying IHC synaptic exocytosis are largely unknown. We studied otoferlin, a predicted C2-domain transmembrane protein, which is defective in a recessive form of human deafness. We show that otoferlin expression in the hair cells correlates with afferent synaptogenesis and find that otoferlin localizes to ribbon-associated synaptic vesicles. Otoferlin binds Ca(2+) and displays Ca(2+)-dependent interactions with the SNARE proteins syntaxin1 and SNAP25. Otoferlin deficient mice (Otof(-/-)) are profoundly deaf. Exocytosis in Otof(-/-) IHCs is almost completely abolished, despite normal ribbon synapse morphogenesis and Ca(2+) current. Thus, otoferlin is essential for a late step of synaptic vesicle exocytosis and may act as the major Ca(2+) sensor triggering membrane fusion at the IHC ribbon synapse.

Comment in

PMID:
17055430
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk