Format

Send to

Choose Destination
See comment in PubMed Commons below
J Pharmacokinet Pharmacodyn. 2007 Apr;34(2):141-56. Epub 2006 Oct 12.

Mixture models and subpopulation classification: a pharmacokinetic simulation study and application to metoprolol CYP2D6 phenotype.

Author information

  • 1Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.

Abstract

Mixture models are applied in population pharmacometrics to characterize underlying population distributions that are not adequately approximated by a single normal or lognormal distribution. In addition to obtaining individualized maximum a posteriori Bayesian post hoc parameter estimates, the subpopulation to which an individual was classified can be determined. However, the accuracy of the classification of subjects to subpopulations is not well studied. We investigated the impact of several factors on the accuracy of classification in mixture models applied to pharmacokinetics using a simulation strategy. The availability of actual subject data allowed us to evaluate mixture model classification in a potentially common application, namely, the classification of clearance into poor metabolizer (PM) or extensive metabolizer (EM) subgroups with the known phenotype status in subjects receiving metoprolol. The factors explored in the simulation study were the magnitude of difference between the clearances in two subpopulations, the between subject variability in clearance, the mixing-fraction, and the population sample size. Populations were simulated at various levels of the above factors and analyzed with a mixture model using NONMEM. The population pharmacokinetics of metoprolol were modeled with the EM/PM phenotype as a known covariate, and without the phenotype covariate using a mixture model. Within the range of scenarios studied, the proportion of subjects classified into the correct subpopulation was high. The simulation-estimation study suggests that a greater separation between two subpopulations, a smaller variability in the parameter distribution, a larger sample size, and a smaller size subpopulation tend to be associated with a greater accuracy of subpopulation classification when a mixture model is applied to pharmacokinetic data. In a population pharmacokinetic analysis of metoprolol, a drug that undergoes polymorphic metabolism, it was possible to correctly identify phenotype status using a mixture model.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk