Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16147-52. Epub 2006 Oct 19.

Functional reconstitution and characterization of Pyrococcus furiosus RNase P.

Author information

  • 1Molecular, Cellular and Developmental Biology Graduate Program, Ohio State Biochemistry Program, Ohio State University, Columbus, OH 43210, USA.


RNase P, which catalyzes the magnesium-dependent 5'-end maturation of tRNAs in all three domains of life, is composed of one essential RNA and a varying number of protein subunits depending on the source: at least one in bacteria, four in archaea, and nine in eukarya. To address why multiple protein subunits are needed for archaeal/eukaryal RNase P catalysis, in contrast to their bacterial relative, in vitro reconstitution of these holoenzymes is a prerequisite. Using recombinant subunits, we have reconstituted in vitro the RNase P holoenzyme from the thermophilic archaeon Pyrococcus furiosus (Pfu) and furthered our understanding regarding its functional organization and assembly pathway(s). Whereas Pfu RNase P RNA (RPR) alone is capable of multiple turnover, addition of all four RNase P protein (Rpp) subunits to Pfu RPR results in a 25-fold increase in its k(cat) and a 170-fold decrease in K(m). In fact, even in the presence of only one of two specific pairs of Rpps, the RPR displays activity at lower substrate and magnesium concentrations. Moreover, a pared-down, mini-Pfu RNase P was identified with an RPR deletion mutant. Results from our kinetic and footprinting studies on Pfu RNase P, together with insights from recent structures of bacterial RPRs, provide a framework for appreciating the role of multiple Rpps in archaeal RNase P.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk