Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Traffic. 2006 Dec;7(12):1688-700. Epub 2006 Oct 17.

Novel binding sites on clathrin and adaptors regulate distinct aspects of coat assembly.

Author information

  • 1The G.W. Hooper Foundation, Departments of Microbiology and Immunology, Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0552, USA.

Abstract

Clathrin-coated vesicles (CCVs) sort proteins at the plasma membrane, endosomes and trans Golgi network for multiple membrane traffic pathways. Clathrin recruitment to membranes and its self-assembly into a polyhedral coat depends on adaptor molecules, which interact with membrane-associated vesicle cargo. To determine how adaptors induce clathrin recruitment and assembly, we mapped novel interaction sites between these coat components. A site in the ankle domain of the clathrin triskelion leg was identified that binds a common site on the appendages of tetrameric [AP1 and AP2] and monomeric (GGA1) adaptors. Mutagenesis and modeling studies suggested that the clathrin-GGA1 appendage interface is nonlinear, unlike other peptide-appendage interactions, but overlaps with a sandwich domain binding site for accessory protein peptides, allowing for competitive regulation of coated vesicle formation. A novel clathrin box in the GGA1 hinge region was also identified and shown to mediate membrane recruitment of clathrin, while disruption of the clathrin-GGA1 appendage interaction did not affect recruitment. Thus, the distinct sites for clathrin-adaptor interactions perform distinct functions, revealing new aspects to regulation of CCV formation.

PMID:
17052248
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk