Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2007 Jan 5;144(1):8-16. Epub 2006 Oct 16.

Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator.

Author information

  • 1National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India.

Abstract

The amygdala, which exerts a regulatory influence on the stress response, is itself affected by stress. It has been reported that the serine protease tissue-plasminogen activator (tPA), a key mediator of spine plasticity, is required for stress-induced facilitation of anxiety-like behavior. Importantly, tPA is also involved in stress-induced activation of molecular signals that have the potential to contribute to neuronal remodeling in the medial amygdala (MeA). However, little is known about the precise nature of, and specific role played by tPA in, stress-induced structural plasticity in the MeA. Hence, we compared the impact of chronic restraint stress on spine density of medium spiny stellate neurons in MeA in wild-type mice with mice in which the tPA gene is disrupted (tPA-/-). In wild-type mice, chronic stress caused significant reduction in MeA spine density, which was in contrast to enhanced spine density in the neighboring basolateral amygdala (BLA). Strikingly, tPA-/- mice exhibited significant attenuation of stress-induced spine retraction in the MeA, but BLA spinogenesis was not affected. Therefore, tPA-dependence of stress-induced modulation in spine density was restricted to the MeA. Further, MeA neurons in tPA-/- mice, even when challenged with repeated stress, were able to maintain levels of spine density that were comparable to that of wild-type mice without stress. Our findings provide novel evidence for a permissive role for tPA in amygdalar spine plasticity elicited by behavioral stress.

PMID:
17049177
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk