Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Dec 1;281(48):36732-41. Epub 2006 Oct 10.

Activation of platelet alphaIIbbeta3 by an exogenous peptide corresponding to the transmembrane domain of alphaIIb.

Author information

  • 1Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Abstract

A transmembrane domain heterodimer, acting in concert with a membrane-proximal cytoplasmic domain clasp, is thought to maintain integrins in a low affinity state. To test whether helix-helix interactions between the alphaIIb and beta3 transmembrane domains regulate the activity of integrin alphaIIbbeta3, we synthesized a soluble peptide corresponding to the alphaIIb transmembrane domain, designated alphaIIb-TM, and we studied its ability to affect alphaIIbbeta3 activity in human platelets. alphaIIb-TM was alpha-helical in detergent micelles and phospholipid vesicles, readily inserted into membrane bilayers, bound to intact purified alphaIIbbeta3, and specifically associated with the transmembrane domain of alphaIIb, rather than the transmembrane domains of beta3, alpha2, and beta1, other integrin subunits present in platelets. When added to suspensions of gel-filtered platelets, alphaIIb-TM rapidly induced platelet aggregation that was not inhibited by preincubating platelets with the prostaglandin E(1) or the ADP scavenger apyrase but was prevented by the divalent cation chelator EDTA. Furthermore, alphaIIb-TM induced fibrinogen binding to platelets but not the binding of osteopontin, a specific ligand for platelet alphavbeta3. The peptide also induced fibrinogen binding to recombinant alphaIIbbeta3 expressed by Chinese hamster ovary cells, confirming that its effect was independent of platelet signal transduction. Finally, transmission electron microscopy of purified alphaIIbbeta3 revealed that alphaIIb-TM shifted the integrin from a closed configuration with its stalks touching to an open configuration with separated stalks. These observations demonstrate that transmembrane domain interactions regulate integrin function in situ and that it is possible to target intra-membranous protein-protein interactions in a way that can have functional consequences.

PMID:
17032655
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk