Display Settings:


Send to:

Choose Destination
Protist. 2007 Jan;158(1):39-50. Epub 2006 Oct 4.

Cell cycle-dependent expression of gamma-tubulin in the amicronuclear ciliate Tetrahymena pyriformis.

Author information

  • 1Department of Molecular, Cellular and Animal Biology, University of Camerino, Camerino 62032, v. Camerini 2, Italy.


In ciliates, different microtubular structures are nucleated from diverse Microtubule Organizing Centers (MTOCs). gamma-Tubulin is a tubulin superfamily member that plays an essential role in microtubule nucleation at the MTOCs. However, little is known about mechanisms regulating the activity of gamma-tubulin on different MTOCs and during the cell cycle. In Tetrahymena thermophila, the alpha- and beta-tubulin expression is regulated mainly at the transcriptional level, and changes in the ratio of polymerized/unpolymerized tubulin dimers lead to an increase or decrease of alpha- and beta-tubulin transcription. This study deals with the characterization of gamma-tubulin in the amicronuclear ciliate Tetrahymena pyriformis. Sequence analysis revealed some specific substitutions in nucleotide-binding loops characteristic of the Tetrahymena genus and putative conserved phosphorylation sites located on the external surface of the gamma-tubulin molecule. gamma-Tubulin expression during the cell cycle, in the presence of microtubular poisons and after deciliation, was also characterized. We found that gamma-tubulin mRNA levels are correlated with basal body proliferation and gamma-tubulin nuclear localization. We also found that gamma-tubulin expression changes during anti-microtubular drugs treatment, but does not changes during reciliation. These findings suggest a relationship between the level of unpolymerized tubulin dimers and gamma-tubulin transcription.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk