Send to

Choose Destination
See comment in PubMed Commons below
Phys Med Biol. 2006 Oct 21;51(20):5347-62. Epub 2006 Oct 3.

Rapid dual-injection single-scan 13N-ammonia PET for quantification of rest and stress myocardial blood flows.

Author information

  • 1Utah Center for Advanced Imaging Research, Department of Radiology and Department of Bioengineering, CAMT, 729 Arapeen Drive, University of Utah, Salt Lake City, UT 84108-1218, USA.


Quantification of myocardial blood flows at rest and stress using 13N-ammonia PET is an established method; however, current techniques require a waiting period of about 1 h between scans. The objective of this study was to test a rapid dual-injection single-scan approach, where 13N-ammonia injections are administered 10 min apart during rest and adenosine stress. Dynamic PET data were acquired in six human subjects using imaging protocols that provided separate single-injection scans as gold standards. Rest and stress data were combined to emulate rapid dual-injection data so that the underlying activity from each injection was known exactly. Regional blood flow estimates were computed from the dual-injection data using two methods: background subtraction and combined modelling. The rapid dual-injection approach provided blood flow estimates very similar to the conventional single-injection standards. Rest blood flow estimates were affected very little by the dual-injection approach, and stress estimates correlated strongly with separate single-injection values (r=0.998, mean absolute difference=0.06 ml min-1 g-1). An actual rapid dual-injection scan was successfully acquired in one subject and further demonstrates feasibility of the method. This study with a limited dataset demonstrates that blood flow quantification can be obtained in only 20 min by the rapid dual-injection approach with accuracy similar to that of conventional separate rest and stress scans. The rapid dual-injection approach merits further development and additional evaluation for potential clinical use.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd. Icon for PubMed Central
    Loading ...
    Write to the Help Desk