Display Settings:


Send to:

Choose Destination
J Neural Transm Suppl. 2006;(70):57-60.

The role of Pitx3 in survival of midbrain dopaminergic neurons.

Author information

  • 1Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Utrecht, The Netherlands.


Dopamine belongs to the most intensively studied neurotransmitters of the brain, because of its implications in psychiatric and neurological disorders. Although, clinical relevance of midbrain dopaminergic (mDA) neurons is well recognized and dopaminergic dysfunction may have a genetic component, the genetic cascades underlying developmental processes are still largely unknown. With the advances in molecular biology, mDA neurons and their involvement in psychiatric and neurological disorders are now subject of studies that aim to delineate the fundamental neurobiology of these neurons. These studies are concerned with developmental processes, cell-specific gene expression and regulation, molecular pharmacology, and genetic association of dopamine-related genes and mDA-associated disorders. Several transcription factors implicated in the post-mitotic mDA development, including Nurr1, Lmx1b, Pitx3, and En1/En2 have contributed to the understanding of how mDA neurons are generated in vivo. Furthermore, these studies provide insights into new strategies for future therapies of Parkinson's Disease (PD) using stem cells for engineering DA neurons in vitro. Here, we will discuss the role of Pitx3 in molecular mechanisms involved in the regional specification, neuronal specification and differentiation of mDA neurons.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk