Send to:

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2006 Oct 5;110(39):19191-7.

Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells.

Author information

  • 1Energy Research Centre of The Netherlands, ECN, Unit Solar Energy, Westerduinweg 3, 1755 LE Petten, The Netherlands.


In this study, the influence of the TiCl(4) post-treatment on nanocrystalline TiO(2) films as electrodes in dye-sensitized solar cells is investigated and compared to nontreated films. As a result of this post-treatment cell efficiencies are improved, due to higher photocurrents. On a microscopic scale TiO(2) particle growth on the order of 1 nm is observed. Despite a corresponding decrease of BET surface area, more dye is adsorbed onto the oxide surface. Although it seems trivial to match this finding with the improved photocurrent, this performance improvement cannot be attributed to higher dye adsorption only. This follows from comparison between incident photon to current conversion efficiency (IPCE) and light absorption characteristics. Since the charge transport properties of the TiO(2) films are already more than sufficient without treatment, the increase in short circuit current density J(SC) cannot be related to improvements in charge transport either. Transient photocurrent measurements indicate a shift in the conduction band edge of the TiO(2) upon TiCl(4) treatment. It is concluded that the main contribution to enhanced current originates from this shift in conduction band edge, resulting in improved charge injection into the TiO(2).

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk