Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Med Chem. 2006 Oct 5;49(20):5958-68.

Antibacterial agent discovery using thymidylate synthase biolibrary screening.

Author information

  • 1Dipartimento di Scienze Farmaceutiche, Universit√† degli Studi di Modena e Reggio Emilia (UNIMORE), Via Campi 183, 41100 Modena, Italy. costimp@unimore.it

Abstract

Thymidylate synthase (TS, ThyA) catalyzes the reductive methylation of 2'-deoxyuridine 5'-monophosphate to 2'-deoxythymidine 5'-monophosphate, an essential precursor for DNA synthesis. A specific inhibition of this enzyme induces bacterial cell death. As a second round lead optimization design, new 1,2-naphthalein derivatives have been synthesized and tested against a TS-based biolibrary, including human thymidylate synthase (hTS). Docking studies have been performed to rationalize the experimentally observed affinity profiles of 1,2-naphthalein compounds toward Lactobacillus casei TS and hTS. The best TS inhibitors have been tested against a number of clinical isolates of Gram-positive-resistant bacterial strains. Compound 3,3-bis(3,5-dibromo-4-hydroxyphenyl)-1H,3H-naphtho[1,2-c]furan-1-one (5) showed significant antibacterial activity, no in vitro toxicity, and dose-response effects against Staphylococcus epidermidis (MIC=0.5-2.5 microg/mL) clinical isolate strains, which are resistant to at least 17 of the best known antibacterial agents, including vancomycin. So far this compound can be regarded as a leading antibacterial agent.

PMID:
17004711
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk