Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Appl Spectrosc. 2006 Sep;60(9):1029-39.

Correcting attenuated total reflection-Fourier transform infrared spectra for water vapor and carbon dioxide.

Author information

  • 1Biochemistry and Nutrition Group, BioCentrum-DTU, Technical University of Denmark, building 224, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark.

Abstract

Fourier transform infrared (FT-IR) spectroscopy is a valuable technique for characterization of biological samples, providing a detailed fingerprint of the major chemical constituents. However, water vapor and CO(2) in the beam path often cause interferences in the spectra, which can hamper the data analysis and interpretation of results. In this paper we present a new method for removal of the spectral contributions due to atmospheric water and CO(2) from attenuated total reflection (ATR)-FT-IR spectra. In the IR spectrum, four separate wavenumber regions were defined, each containing an absorption band from either water vapor or CO(2). From two calibration data sets, gas model spectra were estimated in each of the four spectral regions, and these model spectra were applied for correction of gas absorptions in two independent test sets (spectra of aqueous solutions and a yeast biofilm (C. albicans) growing on an ATR crystal, respectively). The amounts of the atmospheric gases as expressed by the model spectra were estimated by regression, using second-derivative transformed spectra, and the estimated gas spectra could subsequently be subtracted from the sample spectra. For spectra of the growing yeast biofilm, the gas correction revealed otherwise hidden variations of relevance for modeling the growth dynamics. As the presented method improved the interpretation of the principle component analysis (PCA) models, it has proven to be a valuable tool for filtering atmospheric variation in ATR-FT-IR spectra.

PMID:
17002829
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Ingenta plc
    Loading ...
    Write to the Help Desk