Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2007 Jan;28(3):540-9. Epub 2006 Sep 25.

Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery.

Author information

  • 1Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore.

Abstract

Poor water solubility and low transfection efficiency of chitosan are major drawbacks for its use as a gene delivery carrier. PEGylation can increase its solubility, and folate conjugation may improve gene transfection efficiency due to promoted uptake of folate receptor-bearing tumor cells. The aim of this study was to synthesize and characterize folate-poly(ethylene glycol)-grafted chitosan (FA-PEG-Chi) for targeted plasmid DNA delivery to tumor cells. Gel electrophoresis study showed strong DNA binding ability of modified chitosan. The pH(50) values, defined as the pH when the transmittance of a polymer solution at 600 nm has reached 50% of the original value, suggested that the water solubility of PEGylated chitosan had improved significantly. Regression analysis of pH(50) value as a function of substitution degree of PEG yielded an almost linear correlation for PEG-Chi and FA-PEG-Chi. The solubility of PEGylated chitosan decreased slightly by further conjugation of folic acid due to the relatively more hydrophobic nature of folic acid when compared to PEG. In addition, the chitosan-based DNA complexes did not induce remarkable cytotoxicity against HEK 293 cells. FA-PEG-Chi can be a promising gene carrier due to its solubility in physiological pH, efficiency in condensing DNA, low cytotoxicity and targeting ability.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk