Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Stat Med. 2007 May 20;26(11):2277-96.

A comparison of three different models for estimating relative risk in meta-analysis of clinical trials under unobserved heterogeneity.

Author information

  • 1Division for International Health and Biometry, Institute for Social Medicine, Epidemiology, and Health Economy, Joint Centre for Health Sciences and Humanities, CharitĂ© Medical School Berlin, Fabeckstr. 60-62, 14195 Berlin, Germany. kuhnertr@rki.de

Abstract

We focus on the comparison of three statistical models used to estimate the treatment effect in meta-analysis when individually pooled data are available. The models are two conventional models, namely a multi-level and a model based upon an approximate likelihood, and a newly developed model, the profile likelihood model which might be viewed as an extension of the Mantel-Haenszel approach. To exemplify these methods, we use results from a meta-analysis of 22 trials to prevent respiratory tract infections. We show that by using the multi-level approach, in the case of baseline heterogeneity, the number of clusters or components is considerably over-estimated. The approximate and profile likelihood method showed nearly the same pattern for the treatment effect distribution. To provide more evidence two simulation studies are accomplished. The profile likelihood can be considered as a clear alternative to the approximate likelihood model. In the case of strong baseline heterogeneity, the profile likelihood method shows superior behaviour when compared with the multi-level model.

Copyright 2006 John Wiley & Sons, Ltd.

PMID:
16991109
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk