Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Physiology (Bethesda). 2006 Oct;21:326-35.

WNK protein kinases modulate cellular Cl- flux by altering the phosphorylation state of the Na-K-Cl and K-Cl cotransporters.

Author information

  • 1Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.

Abstract

Precise control of cellular Cl(-) transport is necessary for many fundamental physiological processes. For example, the intracellular concentration of Cl(-), fine-tuned through the coordinated action of cellular Cl(-) influx and efflux mechanisms, determines whether a neuron's response to GABA is excitatory or inhibitory. In epithelia, synchrony between apical and basolateral Cl(-) flux, and transcellular and paracellular Cl(-) transport, is necessary for efficient transepithelial Cl(-) reabsorption or secretion. In cells throughout the body, coordination of Cl(-) entry and exit mechanisms help defend against changes in cell volume. The Na-K-Cl and K-Cl cotransporters of the SLC12 gene family are important molecular determinants of Cl(-) entry and exit, respectively, in these systems. The WNK serine-threonine kinase family, members of which are mutated in an inherited form of human hypertension, are components of a signaling pathway that coordinates Cl(-) influx and efflux through SLC12 cotransporters to dynamically regulate intracellular Cl(-) activity.

PMID:
16990453
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk