Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2006;34(18):5007-20. Epub 2006 Sep 20.

ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains.

Author information

  • 1Institute for Immunology, University Hospital Eppendorf, Hamburg, Germany.


Z-DNA binding protein 1 (ZBP1) belongs to a family of proteins that contain the Zalpha domain, which binds specifically to left-handed Z-DNA and Z-RNA. Like all vertebrate proteins in the Zalpha family, it contains two Zalpha-like domains and is highly inducible by immunostimulation. Using circular dichroism spectroscopy and electrophoretic mobility shift assays we show that both Zalpha domains can bind Z-DNA independently and that substrate binding is greatly enhanced when both domains are linked. Full length ZBP1 and a prominent splice variant lacking the first Zalpha domain (DeltaZalpha) showed strikingly different subcellular localizations. While the full length protein showed a finely punctate cytoplasmatic distribution, ZBP1DeltaZalpha accumulated in large cytoplasmic granules. Mutation of residues important for Z-DNA binding in the first Zalpha domain resulted in a distribution comparable to that of ZBP1DeltaZalpha. The ZBP1DeltaZalpha granules are distinct from stress granules (SGs) and processing bodies but dynamically interacted with these. Polysome stabilization led to the disassembly of ZBP1DeltaZalpha granules, indicating that mRNA are integral components. Heat shock and arsenite exposure had opposing effects on ZBP1 isoforms: while ZBP1DeltaZalpha granules disassembled, full length ZBP1 accumulated in SGs. Our data link ZBP1 to mRNA sorting and metabolism and indicate distinct roles for ZBP1 isoforms.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk