Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Mol Microbiol Biotechnol. 2006;11(3-5):167-91.

Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications.

Author information

  • 1Department of Microbiology and Immunology, Queen's University, Kingston, Canada.

Abstract

The archaeal flagellum is a unique motility organelle. While superficially similar to the bacterial flagellum, several similarities have been reported between the archaeal flagellum and the bacterial type IV pilus system. These include the multiflagellin nature of the flagellar filament, N-terminal sequence similarities between archaeal flagellins and bacterial type IV pilins, as well as the presence of homologous proteins in the two systems. Recent advances in archaeal flagella research add to the growing list of similarities. First, the preflagellin peptidase that is responsible for processing the N-terminal signal peptide in preflagellins has been identified. The preflagellin peptidase is a membrane-bound enzyme topologically similar to its counterpart in the type IV pilus system (prepilin peptidase); the two enzymes are demonstrated to utilize the same catalytic mechanism. Second, it has been suggested that the archaeal flagellum and the bacterial type IV pilus share a similar mode of assembly. While bacterial flagellins and type IV pilins can be modified with O-linked glycans, N-linked glycans have recently been reported on archaeal flagellins. This mode of glycosylation, as well as the observation that the archaeal flagellum lacks a central channel, are both consistent with the proposed assembly model. On the other hand, the failure to identify other genes involved in archaeal flagellation by homology searches likely implies a novel aspect of the archaeal flagellar system. These interesting features remain to be deciphered through continued research. Such knowledge would be invaluable to motility and protein export studies in the Archaea.

PMID:
16983194
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for S. Karger AG, Basel, Switzerland
    Loading ...
    Write to the Help Desk