Format

Send to:

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 2006 Nov 1;312(18):3683-92. Epub 2006 Aug 16.

Quantitative assessment of local collagen matrix remodeling in 3-D culture: the role of Rho kinase.

Author information

  • 1Graduate Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Erratum in

  • Exp Cell Res. 2009 Oct 15;315(17):3076.

Abstract

The purpose of this study was to quantitatively assess the role of Rho kinase in modulating the pattern and amount of local cell-induced collagen matrix remodeling. Human corneal fibroblasts were plated inside 100-microm thick fibrillar collagen matrices and cultured for 24 h in media with or without the Rho kinase inhibitor Y-27632. Cells were then fixed and stained with phalloidin. Fluorescent (for f-actin) and reflected light (for collagen fibrils) 3-D optical section images were acquired using laser confocal microscopy. Fourier transform analysis was used to assess collagen fibril alignment, and 3-D cell morphology and local collagen density were measured using MetaMorph. Culture in serum-containing media induced significant global matrix contraction, which was inhibited by blocking Rho kinase (p<0.001). Fibroblasts generally had a bipolar morphology and intracellular stress fibers. Collagen fibrils were compacted and aligned parallel to stress fibers and pseudopodia. When Rho kinase was inhibited, cells had a more cortical f-actin distribution and dendritic morphology. Both local collagen fibril density and alignment were significantly reduced (p<0.01). Overall, the data suggests that Rho kinase-dependent contractile force generation leads to co-alignment of cells and collagen fibrils along the plane of greatest resistance, and that this process contributes to global matrix contraction.

PMID:
16978606
[PubMed - indexed for MEDLINE]
PMCID:
PMC2075357
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk