Display Settings:


Send to:

Choose Destination
Plant Cell Physiol. 2006 Oct;47(10):1372-80. Epub 2006 Sep 14.

ABA regulation of K(+)-permeable channels in maize subsidiary cells.

Author information

  • 1University of Wuerzburg, Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Bioscience, Julius-von-Sachs-Platz 2, D-97082 Wuerzburg, Germany.


An antiparallel-directed potassium transport between subsidiary cells and guard cells which form the graminean stomatal complex has been proposed to drive stomatal movements in maize. To gain insights into the coordinated shuttling of K(+) ions between these cell types during stomatal closure, the effect of ABA on the time-dependent K(+) uptake and K(+) release channels as well as on the instantaneously activating non-selective cation channels (MgC) was examined in subsidiary cells. Patch-clamp studies revealed that ABA did not affect the MgC channels but differentially regulated the time-dependent K(+) channels. ABA caused a pronounced rise in time-dependent outward-rectifying K(+) currents (K(out)) at alkaline pH and decreased inward-rectifying K(+) currents (K(in)) in a Ca(2+)-dependent manner. Our results show that the ABA-induced changes in time-dependent K(in) and K(out) currents from subsidiary cells are very similar to those previously described for guard cells. Thus, the direction of K(+) transport in subsidiary cells and guard cells during ABA-induced closure does not seem to be grounded solely on the cell type-specific ABA regulation of K(+) channels.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk