Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Eukaryot Microbiol. 2006 Sep-Oct;53(5):364-73.

Phylogeography of the cosmopolitan marine parasite Kudoa thyrsites (Myxozoa: Myxosporea).

Author information

  • 1Center for Fish Disease Research, Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, Oregon 97331-3404, USA. whippsc@onid.orst.edu

Abstract

Kudoa thyrsites (Myxozoa: Multivalvulida) is a cosmopolitan marine parasite of fishes associated with post-mortem tissue degradation. Financial losses incurred as a result of these infections are of concern to commercial fisheries. There is conflicting evidence whether K. thyrsites represents a cryptic species complex. Myxospore morphology is very similar for K. thyrsites across its range, but preliminary genetic analyses show some differences. Kudoa thyrsites and the morphologically similar Kudoa histolytica were examined from hosts in British Columbia, Canada, Oregon, USA, Chile, England, South Africa, Australia, and Japan. We compared myxospore morphology and DNA sequences of heat shock protein 70 and the small subunit, large subunit, and internal transcribed spacer 1 of the ribosomal DNA. There was some morphological variation between regional representatives, inconsistent with genetic analyses. Phylogenetically, major separations correlated to four broad geographic regions: Japan, Australia, eastern Pacific, and eastern Atlantic. Within these regions there was little additional genetic structure. These data are evidence for regional subdivision of K. thyrsites suggesting global transplantation of fishes has yet to homogenize these distinctions. Within regions, parasite gene flow appears to be high between host species, suggesting little host specificity and minimal cryptic speciation. Our data also indicate that K. histolytica is not a valid species, as it was morphologically and genetically indistinguishable from K. thyrsites.

PMID:
16968454
[PubMed - indexed for MEDLINE]

MeSH Terms, Substances, Secondary Source ID

MeSH Terms

Substances

Secondary Source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk