Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Nov 3;281(44):33403-13. Epub 2006 Sep 6.

Sulfonylureas correct trafficking defects of disease-causing ATP-sensitive potassium channels by binding to the channel complex.

Author information

  • 1Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon 97239, USA.

Abstract

ATP-sensitive potassium (K(ATP)) channels mediate glucose-induced insulin secretion by coupling metabolic signals to beta-cell membrane potential and the secretory machinery. Reduced K(ATP) channel expression caused by mutations in the channel proteins: sulfonylurea receptor 1 (SUR1) and Kir6.2, results in loss of channel function as seen in congenital hyperinsulinism. Previously, we reported that sulfonylureas, oral hypoglycemic drugs widely used to treat type II diabetes, correct the endoplasmic reticulum to the plasma membrane trafficking defect caused by two SUR1 mutations, A116P and V187D. In this study, we investigated the mechanism by which sulfonylureas rescue these mutants. We found that glinides, another class of SUR-binding hypoglycemic drugs, also markedly increased surface expression of the trafficking mutants. Attenuating or abolishing the ability of mutant SUR1 to bind sulfonylureas or glinides by the following mutations: Y230A, S1238Y, or both, accordingly diminished the rescuing effects of the drugs. Interestingly, rescue of the trafficking defects requires mutant SUR1 to be co-expressed with Kir6.2, suggesting that the channel complex, rather than SUR1 alone, is the drug target. Observations that sulfonylureas also reverse trafficking defects caused by neonatal diabetes-associated Kir6.2 mutations in a way that is dependent on intact sulfonylurea binding sites in SUR1 further support this notion. Our results provide insight into the mechanistic and structural basis on which sulfonylureas rescue K(ATP) channel surface expression defects caused by channel mutations.

PMID:
16956886
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk