Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Microbiol. 2006 Oct;62(1):252-62. Epub 2006 Aug 31.

Nickel homeostasis in Escherichia coli - the rcnR-rcnA efflux pathway and its linkage to NikR function.

Author information

  • 1Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA.

Abstract

The nickel physiology of Escherichia coli is dominated by its Ni-Fe hydrogenase isozymes, which are expressed under anaerobic growth conditions. Hydrogenase activity in E. coli requires the NikABCDE nickel transporter, which is transcriptionally repressed by NikR in the presence of excess nickel. Recently, a nickel and cobalt-efflux protein, RcnA, was identified in E. coli. This study examines the effect of RcnA on nickel homeostasis in E. coli. Under nickel-limiting conditions, deletion of rcnA increased NikR activity in vivo. Nickel and cobalt-dependent regulation of rcnA expression required the newly identified transcriptional repressor RcnR (formerly YohL). Deletion of rcnR results in constitutive rcnA expression and a corresponding decrease in NikR activity. Purified RcnR binds directly to the rcnA promoter DNA fragment and this interaction is inhibited by nickel and cobalt. Nickel accumulation is affected differently among deletion strains with impaired nickel homeostasis. Surprisingly, in low nickel growth conditions rcnA expression is required for nickel import via NikABCDE. The data support a model with two distinct pools of nickel ions in E. coli. NikR bridges these two pools by controlling the levels of the hydrogenase-associated pool based on the nickel levels in the second pool.

PMID:
16956381
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk