Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Bioinformatics. 2006 Nov 15;22(22):2800-5. Epub 2006 Sep 5.

Discovering disease-genes by topological features in human protein-protein interaction network.

Author information

  • 1Department of Bioinformatics, Harbin Medical University, Harbin 150086, China. jianzxu@hotmail.com

Abstract

MOTIVATION:

Mining the hereditary disease-genes from human genome is one of the most important tasks in bioinformatics research. A variety of sequence features and functional similarities between known human hereditary disease-genes and those not known to be involved in disease have been systematically examined and efficient classifiers have been constructed based on the identified common patterns. The availability of human genome-wide protein-protein interactions (PPIs) provides us with new opportunity for discovering hereditary disease-genes by topological features in PPIs network.

RESULTS:

This analysis reveals that the hereditary disease-genes ascertained from OMIM in the literature-curated (LC) PPIs network are characterized by a larger degree, tendency to interact with other disease-genes, more common neighbors and quick communication to each other whereas those properties could not be detected from the network identified from high-throughput yeast two-hybrid mapping approach (EXP) and predicted interactions (PDT) PPIs network. KNN classifier based on those features was created and on average gained overall prediction accuracy of 0.76 in cross-validation test. Then the classifier was applied to 5262 genes on human genome and predicted 178 novel disease-genes. Some of the predictions have been validated by biological experiments.

PMID:
16954137
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk