Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Control Release. 2006 Nov 28;116(2):150-8. Epub 2006 Jul 20.

Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug.

Author information

  • 1Departments of Chemical-Biomolecular Engineering and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

Abstract

Cytotoxicity can in principle be maximized if drugs with different activities can be delivered simultaneously to the same cell. However, combination therapy with drugs having distinct properties such as solubility generally requires use of multiple carriers or solvents, limiting the likelihood of simultaneous delivery. In this brief report, we describe the in vivo use of biodegradable polymersomes for systemic delivery of an anticancer cocktail. These polymer-based shells exploit a thick hydrophobic membrane and an aqueous lumen to efficiently carry both hydrophobic and hydrophilic drugs, respectively paclitaxel and doxorubicin. Polymersomes are long-circulating in vivo but also degrade and release their drugs on a time scale of about 1 day, by which time the tumors treated here will otherwise have almost doubled in volume. A single systemic injection of the dual drug combination shows a higher maximum tolerated dose than the free drug cocktail and shrinks tumors more effectively and more sustainably than free drug: 50% smaller tumors are seen at 5 days with polymersomes. The polymersomes cause two-fold higher cell death in tumors than free drug and show quantitatively similar increases in maximum tolerated dose and drug accumulation within the tumors-suggesting promise for multi-drug delivery.

PMID:
16942814
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk