Send to:

Choose Destination
See comment in PubMed Commons below
J Chem Phys. 2006 Aug 7;125(5):054506.

Solvent effects on resonant first hyperpolarizabilities and Raman and hyper-Raman spectra of DANS and a water-soluble analog.

Author information

  • 1School of Natural Sciences, University of California, Merced, Merced, California 95340, USA.


The two-photon-resonant first hyperpolarizabilities associated with hyper-Rayleigh and hyper-Raman scattering are reported for 4-dimethylamino-4-nitrostilbene in 1,4-dioxane, dichloromethane, acetonitrile, and methanol, and for an ionic analog, 4-N,N-bis(6-(N,N,N-trimethylammonium)-hexyl)amino-4-nitrostilbene dibromide in methanol and water. Resonance Raman and hyper-Raman excitation profiles are also measured and modeled. The resonance Raman and hyper-Raman spectra show very similar relative intensities which do not vary much as the excitation frequency is tuned across the lowest-energy strong linear absorption band, suggesting that a single resonant electronic state dominates the one- and two-photon absorptions in this region. The absorption, resonance Raman, and hyper-Raman profiles can be simulated reasonably well with a common set of parameters. The peak resonant (absolute value of beta)2, measured by hyper-Rayleigh scattering, varies by about 50% over the range of solvents examined and shows a weak correlation with the linear absorption maximum, with the redder-absorbing systems exhibiting larger peak hyperpolarizabilities. The experimental hyper-Rayleigh intensities are higher than those calculated, possibly reflecting contributions from nonresonant electronic states.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Institute of Physics
    Loading ...
    Write to the Help Desk