The microwave spectrum of the 1,1-difluoroprop-2-ynyl radical, F2*C-C[triple bond]CH

J Chem Phys. 2006 Aug 7;125(5):054309. doi: 10.1063/1.2215599.

Abstract

The rotational spectrum of the 1,1-difluoroprop-2-ynyl radical, F2*C-C[triple bond]CH, a partially fluorinated variant of the propargyl radical, has been recorded in the ground electronic, 2B1, state using pulsed discharge, pulsed-jet, Fabry-Perot Fourier transform microwave spectroscopy. Five successive a-type rotational transitions, from N = 1-0 to N = 5-4, and Ka = 0, 1, and 2, were measured between 6.5 and 32.5 GHz with an uncertainty of 5 kHz. The molecular constants, including fine and hyperfine constants, were precisely determined. These constants are compared with our predictions based on a density functional theory level ab initio calculations and with the fine and hyperfine constants of the propargyl radical. The measured electron spin densities suggest that both the difluoropropargyl and the difluoroallenyl resonance forms [F2*C-C[triple bond]CH<-->F2C=C=C*H] make major contributions to the electronic structure of the radical.