Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Phys Chem A. 2006 Sep 7;110(35):10375-83.

Quasi-classical trajectory calculations analyzing the reactivity and dynamics of asymmetric stretch mode excitations of methane in the H + CH4 reaction.

Author information

  • 1Departamento de Química Física, Universidad de Extremadura, 06071 Badajoz, Spain.

Abstract

An exhaustive dynamics study was performed at two collision energies, 1.52 and 2.20 eV, analyzing the effects of the asymmetric (nu3) stretch mode excitation in the reactivity and dynamics of the gas-phase H + CH4 reaction. Quasi-classical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories, were performed on an analytical potential energy surface previously developed by our group. First, strong coupling between different vibrational modes in the entry channel was observed, indicating that energy can flow between these modes, and therefore that they do not preserve their adiabatic character along the reaction path; i.e., the reaction is nonadiabatic. Second, we found that the reactant vibrational excitation has a significant influence on the vibrational and rotational product distributions. With respect to the vibrational distribution, our results confirm the purely qualitative experimental evidence, although the theoretical results presented here are also quantitative. The rotational distributions are predictive, because no experimental data have been reported. Third, with respect to the reactivity, we found that the nu3 mode excitation by one quantum is more reactive than the ground state by a factor of about 2, independently of the collision energy, and in agreement with the experimental measurement of 3.0 +/- 1.5. Fourth, the state-to-state angular distributions of the products reproduce the experimental behavior at 1.52 eV, where the CH3 products scatter sideways and backward. At 2.20 eV this experimental information is not available, and therefore the results reported here are again predictive. The satisfactory reproduction of a great variety of experimental data by the present QCT study lends confidence to the potential energy surface constructed by our group and to those results whose accuracy cannot be checked by comparison with experiment.

PMID:
16942042
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk