Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Gen Physiol. 2006 Sep;128(3):317-36.

Slo3 K+ channels: voltage and pH dependence of macroscopic currents.

Author information

  • 1Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.

Abstract

The mouse Slo3 gene (KCNMA3) encodes a K(+) channel that is regulated by changes in cytosolic pH. Like Slo1 subunits responsible for the Ca(2+) and voltage-activated BK-type channel, the Slo3 alpha subunit contains a pore module with homology to voltage-gated K(+) channels and also an extensive cytosolic C terminus thought to be responsible for ligand dependence. For the Slo3 K(+) channel, increases in cytosolic pH promote channel activation, but very little is known about many fundamental properties of Slo3 currents. Here we define the dependence of macroscopic conductance on voltage and pH and, in particular, examine Slo3 conductance activated at negative potentials. Using this information, the ability of a Horrigan-Aldrich-type of general allosteric model to account for Slo3 gating is examined. Finally, the pH and voltage dependence of Slo3 activation and deactivation kinetics is reported. The results indicate that Slo3 differs from Slo1 in several important ways. The limiting conductance activated at the most positive potentials exhibits a pH-dependent maximum, suggesting differences in the limiting open probability at different pH. Furthermore, over a 600 mV range of voltages (-300 to +300 mV), Slo3 conductance shifts only about two to three orders of magnitude, and the limiting conductance at negative potentials is relatively voltage independent compared to Slo1. Within the context of the Horrigan-Aldrich model, these results indicate that the intrinsic voltage dependence (z(L)) of the Slo3 closed-open equilibrium and the coupling (D) between voltage sensor movement are less than in Slo1. The kinetic behavior of Slo3 currents also differs markedly from Slo1. Both activation and deactivation are best described by two exponential components, both of which are only weakly voltage dependent. Qualitatively, the properties of the two kinetic components in the activation time course suggest that increases in pH increase the fraction of more rapidly opening channels.

PMID:
16940555
[PubMed - indexed for MEDLINE]
PMCID:
PMC2151566
Free PMC Article

Images from this publication.See all images (14)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk