Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13427-32. Epub 2006 Aug 28.

Comparison of multiple vertebrate genomes reveals the birth and evolution of human exons.

Author information

  • 1Department of Biological Sciences, Columbia University, New York, NY 10027, USA.

Abstract

Orthologous gene structures in eight vertebrate species were compared on a genomic scale to detect the birth and maturation of new internal exons during the course of evolution. We found that 40% of new human exons are alternatively spliced, and most of these are cassette exons (exons that are either included or skipped in their entirety) with low inclusion rates. This proportion decreases steadily as older and older exons are examined, even as splicing efficiency increases. Remarkably, the great majority of new cassette exons are composed of highly repeated sequences, especially Alu. Many new cassette exons are 5' untranslated exons; the proportion that code for protein increases steadily with age. New protein-coding exons evolve at a high rate, as evidenced by the initially high substitution rates (K(s) and K(a)), as well as the SNP density compared with older exons. This dynamic picture suggests that de novo recruitment rather than shuffling is the major route by which exons are added to genes, and that species-specific repeats could play a significant role in recent evolution.

PMID:
16938881
[PubMed - indexed for MEDLINE]
PMCID:
PMC1569180
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk