Send to

Choose Destination
See comment in PubMed Commons below
Int J Epidemiol. 2006 Oct;35(5):1314-21. Epub 2006 Aug 22.

Methods for monitoring influenza surveillance data.

Author information

  • 1Department of Community Medicine and School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong.



A variety of Serfling-type statistical algorithms requiring long series of historical data, exclusively from temperate climate zones, have been proposed for automated monitoring of influenza sentinel surveillance data. We evaluated three alternative statistical approaches where alert thresholds are based on recent data in both temperate and subtropical regions.


We compared time series, regression, and cumulative sum (CUSUM) models on empirical data from Hong Kong and the US using a composite index (range = 0-1) consisting of the key outcomes of sensitivity, specificity, and time to detection (lag). The index was calculated based on alarms generated within the first 2 or 4 weeks of the peak season.


We found that the time series model was optimal in the Hong Kong setting, while both the time series and CUSUM models worked equally well on US data. For alarms generated within the first 2 weeks (4 weeks) of the peak season in Hong Kong, the maximum values of the index were: time series 0.77 (0.86); regression 0.75 (0.82); CUSUM 0.56 (0.75). In the US data the maximum values of the index were: time series 0.81 (0.95); regression 0.81 (0.91); CUSUM 0.90 (0.94).


Automated influenza surveillance methods based on short-term data, including time series and CUSUM models, can generate sensitive, specific, and timely alerts, and can offer a useful alternative to Serfling-like methods that rely on long-term, historically based thresholds.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk