Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 2006 Oct 20;281(42):31909-19. Epub 2006 Aug 18.

Crystal structures of expressed non-polymerizable monomeric actin in the ADP and ATP states.

Author information

  • 1Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA.

Abstract

Actin filament growth and disassembly, as well as affinity for actin-binding proteins, is mediated by the nucleotide-bound state of the component actin monomers. The structural differences between ATP-actin and ADP-actin, however, remain controversial. We expressed a cytoplasmic actin in Sf9 cells, which was rendered non-polymerizable by virtue of two point mutations in subdomain 4 (A204E/P243K). This homogeneous monomer, called AP-actin, was crystallized in the absence of toxins, binding proteins, or chemical modification, with ATP or ADP at the active site. The two surface mutations do not perturb the structure. Significant differences between the two states are confined to the active site region and sensor loop. The active site cleft remains closed in both states. Minor structural shifts propagate from the active site toward subdomain 2, but dissipate before reaching the DNase binding loop (D-loop), which remains disordered in both the ADP and ATP states. This result contrasts with previous structures of actin made monomeric by modification with tetramethylrhodamine, which show formation of an alpha-helix at the distal end of the D-loop in the ADP-bound but not the ATP-bound form (Otterbein, L. R., Graceffa, P., and Dominguez, R. (2001) Science 293, 708-711). Our reanalysis of the TMR-modified actin structures suggests that the nucleotide-dependent formation of the D-loop helix may result from signal propagation through crystal packing interactions. Whereas the observed nucleotide-dependent changes in the structure present significantly different surfaces on the exterior of the actin monomer, current models of the actin filament lack any actin-actin interactions that involve the region of these key structural changes.

PMID:
16920713
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk