Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biometrics. 2006 Jun;62(2):343-51.

Polydesigns and causal inference.

Author information

  • 1Department of Biostatistics, The Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, USA. fli@jhsph.edu

Abstract

In an increasingly common class of studies, the goal is to evaluate causal effects of treatments that are only partially controlled by the investigator. In such studies there are two conflicting features: (1) a model on the full cohort design and data can identify the causal effects of interest, but can be sensitive to extreme regions of that design's data, where model specification can have more impact; and (2) models on a reduced design (i.e., a subset of the full data), for example, conditional likelihood on matched subsets of data, can avoid such sensitivity, but do not generally identify the causal effects. We propose a framework to assess how inference is sensitive to designs by exploring combinations of both the full and reduced designs. We show that using such a "polydesign" framework generates a rich class of methods that can identify causal effects and that can also be more robust to model specification than methods using only the full design. We discuss implementation of polydesign methods, and provide an illustration in the evaluation of a needle exchange program.

PMID:
16918898
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk